土づくり

soil management

堆肥の効果を発揮するために~±づくりを、かけ声から具体的な技術へ②

ホクレン | 肥料農薬部 | 技術普及課

い

堆 肥

Ш

完熟堆肥?

|堆肥は必ず完熟させる]、「堆

堆肥にこん

POINT!

堆肥を施用する目的を明確にし、目

土堆 一の条件

的に合わせた堆肥を施用しましょう。 件を満たせるわけではありません。 肥を施用するだけで必ず良い土の条 で土がホクホクになる」。 けでもありません。 なイメージを持つ方は多いですが、 良 大限に発揮する方法を紹介します。

肥 の効 果 のあらわれ方

堆肥で期待できる効果は、

ず効果が期待できますが、微量要素 の供給源としての効果、の三つです 性改良、保肥力増加など)、③生物 要素、緩効的な肥効など)、②安定 としての効果は、 と緩効的な肥効は土の条件に関わら 養分としての効果のうち、多量要素 果を期待するかの決め手になります。 を把握することが、 した有機物としての効果(土の物理 養分としての効果(多量要素や微量 表1]。 土づくりしたい圃場の性質・状態 水田では灌漑水か 堆肥にどんな効 主に①

(山地 1981 に加筆)

ま

必ずしも完熟でないといけないわ

堆肥の効果を最

「表 1〕 堆肥(有機物)の施用効果

異なり、

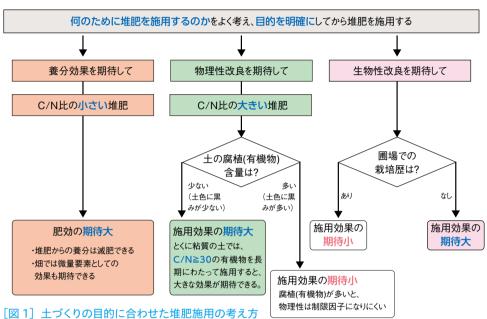
有機物が少ない圃場で効果

果の大きさは土壌中の有機物の量で

また、安定した有機物としての

期待できません。

ら微量要素が供給されるためあまり


堆肥(有機物)	効果の詳細	造成地	畑		水田			
の効果		有機物 少	有機物 少	有機物 多	有機物 少	有機物 多		
養分として	三要素肥料として	0	0	0	0	0		
	微量要素肥料として	0	0	0	×	×		
	緩効性肥料として	0	0	0	0	0		
	植物ホルモンとして	0	×	×	×	×		
安定した 有機物として	物理性の改善や保肥力増加など	0	0	×	0	×		
生物の 供給源として	微生物、地中動物の供給源	0	×	×	×	×		

○:効果が期待できる ×:効果が期待できない 有機物(腐植)の判定基準:砂質の土なら1~2%程度、粘土質の土なら5~6%が目安

[表 2] 各種有機物資材や堆肥の C/N 比による分類と効果

C/N比		~10	~20	20~30	30~	
堆肥の特徴		養分効果大		遅効性	安定有機物	
各資材間 でのC/N比 の比較	小	魚粕 大豆粕 鶏ふん 食品工場汚泥 豚ふん	クローバ 稲わら完熟堆肥 米ぬか 牛ふん 稲わら中熱堆肥	おがくず牛ふん堆肥 おがくず豚ふん堆肥 稲わら未熟堆肥	バーク堆肥 稲わら 麦わら 製紙かす おがくず	
期待される	養分として	0		Δ	×	
効果	土壌の物理性改良	×		Δ	0	

○:効果の期待大 △:施用当年からの効果の期待中 ×:効果の期待小

②窒素飢餓に注意 C/N比が大きい堆肥や有機物資

ります。 の色 (黒み) には分析しないとわかりませんが、 が期待できます。 がある程度の指標にな 有機物の量は厳 土

解される時に土壌中の窒素が使われ、

材を施用すると、

微生物によって分

作物が使える窒素が不足し生育が抑

効果は小さくなります。 地のような極度に有機物の少ない土 すでに多くの生物が生息しているので では期待できます。 生物の供給源としての効果は造成 一般的な圃場では

めもあると思われます。

すので、

窒素施肥量を増やすなど注

制される(窒素飢餓)

恐れがありま

意が必要です。 完熟堆肥が良いとさ

れてきた背景には窒素飢餓を防ぐた

肥 の 種 類 と効果 ഗ

堆 あ らわ n

①炭素と窒素の比率

(C/N比

すると効果的です。 改善を期待したい場合は、 機物として蓄積するので、 きませんが、 素が多く窒素の少ない堆肥 蓄積しにくいため物理性改善には適 われやすいですが、土に有機物として 早く分解されるので養分効果があら く窒素の多い堆肥 2]。完熟堆肥のように炭素が少な れ方は、炭素(C)と窒素 しません。 逆にバーク堆肥のように炭 (C/N比) によって決まります 堆肥や有機物資材の効果のあらわ は、 養分効果はあまり期待で 分解が遅く安定した有 (C/N比 小) $\widehat{\mathbb{N}}$ 毎年施用 物理性の C/N の比 は

必要です。

堆 良 せた堆肥の施用が大切です [図Ⅰ]。 土づくりにあたっては、目的に合わ 肥 い 土を目指 施 用 す た め ഗ

①土壌物理性の改善

肥が適します。ただし、 実感できるまでには長期的な連用 待してC/N比が大きい(未熟) 安定した有機物としての効果を期 改善効果が 堆

②土壌化学性の改善

できます。 づいた減肥を適切に行いましょう。 らわれるので、 施用することで養分供給効果が期待 C/N比が小さい 施用した年から効果があ 北海道施肥ガイドに基 (完熟) 堆肥を